Photodynamic Therapy – The Pragmatic Paradigm

Indranil Sarkar*, Annaji Sreedhar**, Padma R***, Jagadish pai****, Sachin Malagi****, Radhika B****, Vinesh Kamath****, *PG Student, ** Reader, ***Prof. & HOD, ****Professor, ****Senior lecturers. Dept of Periodontics, Coorg Institute of Dental Sciences, Virajpet, Coorg, Karnataka,India

Abstracts: Photodynamic therapy (PDT), also known as photo-radiation therapy, phototherapy, or photochemotherapy, involves the use of a photoactive dye (photosensitizer) that is activated by exposure to light of a specific wavelength in the presence of oxygen. The transfer of energy from the activated photosensitizer to available oxygen results in the formation of toxic oxygen species, such as singlet oxygen and free radicals which damages proteins, lipids, nucleic acids and other cellular components.PDT has wide range of applications in Dentistry ranging from antimicrobial chemotherapy to the diagnosis & treatment of premalignant and malignant conditions. Its application in Periodontics represents a novel therapeutic approach in the management of oral biofilms with consequent alterations in plaque homeostasis. An improved post surgical healing with reduced periodontal inflammation and tissue damage are the hallmarks of PDT. Its scope has been extended in Implantology to promote osseointegration and to prevent peri-implantitis. With such myriad of applications PDT has a promising future depending on the interactions between clinical applications and technological innovations. The paper appraises the various scopes that PDT envisages beyond the horizon. [Shreedhar A NJIRM 2014; 5(4) :72-81]

Key Words: PDT, Singlet Oxygen, Photosensitizer, Implantology, Peri-implantitis, Osseointegration.

Author For Correspondence: Annaji Sreedhar ; Dept of Periodontics, Coorg Institute of Dental Sciences, K.K. Campus, Maggula, Virajpet, Coorg, Karnataka-571218 Email: periorider@gmail.com

Introduction: Man's eternal quest for an elixir as a remedy for rejuvenation has been in vogue since time immemorial. Photodynamic therapy (PDT) – a touchstone promising myriad of possibilities offers a non invasive and novel process in which light, after being absorbed by dyes, sensitizes organisms for visible light induced cell damage. PDT combines soft laser irradiation with the application of toluidine blue "O" dye (TBO). Photodynamic therapy (PDT) can be defined as eradication of target cells by reactive oxygen species produced by means of a photosensitizing compound and light of an appropriate wavelength.¹ It could provide an alternative for targeting microbes directly at the site of infection, thus overcoming the problems associated with antimicrobials.² Allison et al. described PDT as a therapy that "is truly the marriage of a drug and a light".³

Light has been employed in the treatment of disease since antiquity. In the later part of twentieth century it has been used in many different forms including phototherapy for neonatal jaundice, combination of psoralen molecules and ultraviolet molecules and ultraviolet A light(PUVA) in dermatology, photodynamic therapy and photo-detection. The use of photodynamic therapy for inactivating

microorganisms was first demonstrated more than 100 years ago, when Oscar Raab reported the lethal effect of acridine hydrochloride and visible light on Paramecia caudatum. During his study he demonstrated that the effect was greater than that of either acridine alone light alone or acridine exposed to light and added to paramecium. He discovered the optical property of fluorescence and concluded that it was not the light but rather some products of fluorescence that induced in vitro toxicity. He postulated that this effect was caused by the transfer of energy from light to the chemical similar to that seen in plants after absorption of light by the chlorophyll.¹ Photodynamic therapy for human infections is based on the concept that an agent (a photosensitizer) which absorbs light can be preferentially taken up by bacteria and subsequently activated by light of the appropriate wavelength in the presence of oxygen to generate singlet oxygen and free radicals that are cytotoxic to microorganisms.⁴ PDT has shown potential in the treatment of oral leukoplakia, oral lichen planus, and head and neck cancer.⁸ Photodynamic antimicrobial chemotherapy (PACT) has been efficacious in the treatment of bacterial, fungal, parasitic, and viral infections.⁹ The non-oncological applications of PDT include treatment of psoriasis (Weinstein *et al.*, 1991), actinic keratosis (Itoh *et al.*, 2000), rheumatoid arthritis (Miyazawa *et al.*, 2006), and age-related macular degeneration (Kozak*et al.*, 2006).The absence of genotoxic and mutagenic effects of PDT is an important factor for long-term safety during treatment. PDT also represents a novel therapeutic approach in the management of oral bio-films. Disruption of plaque structure has important consequences for homeostasis within the biofilm.¹⁰

Phototargeting Oral Biofilms: <u>Dental caries :</u> Dental caries results from an ecological imbalance in the physiological equilibrium between tooth minerals and oral microbial biofilms, mainly supragingival plaque¹¹. Biofilm bacteria, such as mutans streptococci (Streptococcus mutans and Streptococcus sobrinus) and Lactobacillus species, secrete organic acids as a by-product of the metabolism of fermentable carbohydrates. This process leads to the demineralization of tooth hard-tissue cavitation in its advanced stages¹².

This technique could offer the following benefits: rapid non invasive topical in vivo application of the drug to the carious lesion; rapid bacterial killing after a short exposure to light; unlikely development of resistance considering the widespread generic toxicity of reactive oxygen species; and confined killing by restricting the field of irradiation and the inherently short diffusion radius of reactive oxygen species. Several laboratory studies have demonstrated (using toluidine blue O) the susceptibility of cariogenic bacteria, either in the planktonic phase ^{13,14,15,16} or in the biofilm phase ^{17, 18, 19} to photodynamic therapy. Rose Bengal, a fluorescent dye that is used to study liver function, has been employed to target S. Mutans species in suspension²⁰, and disulfonated aluminium phthalocyanine (AIPcS2) has been shown to be effective against suspensions ²¹ and biofilms of cariogenic bacteria²² as well as against humansupragingival dental plaque microbes in the planktonic phase^{23,24}. The synergistic effect of erythrosine, a dental plaque-disclosing agent currently in clinical use, and photodynamic therapy, induced bacterial cell killing of >1.5 log10 in S. mutans biofilms in vitro^{25, 26}.

Oral candidiasis: Candida albicans becomes a serious opportunistic infectious agent in immunocompromised patients²⁷. C. albicans can grow as biofilms on oral mucosal surfaces²⁸ and prosthetic devices²⁹. Antifungal treatment with agents such as nistatin and miconazole often induce resistance, severely limiting their ability to eradicate fungal biofilms, so that recurrent infection occurs³⁰. Numerous in vitro studies by Souza SC et al, So CW et al, Munin E et al etc have shown that photodynamic therapy is effective in killing Candida in planktonic³¹⁻³⁸ and biofilm^{39,40} phases using methylene blue,^{33,34, 36-38} toluidine blue O^{36,38,40} photofrin³⁹, tionin³⁸, porphyrins³², phthalocyanine^{35,38} and malachite green³⁶. Topical treatment of oral candidiasis by photodynamic therapy may be an alternative to traditional antifungal drug therapy, especially in patients with human immunodeficiency virus (HIV) for whom persistent infection is a major problem⁴¹. Further animal studies should establish a protocol for successful targeting of candidiasis lesions, which will then be tested in human studies. Recently, it has been shown that laser irradiation alone exerted antifungal effects in vitro^{36, 37}. These data are supported by a human study, in which a reduction of inflammation was observed on the palate of subjects with denture stomatitis after five consecutive treatments with laser irradiation⁴². The presence of endogenous chromophores within C. albicans that may contribute to photosensitization requires further investigation.

Periodontal Diseases: Biofilms that colonize tooth surfaces and epithelial cells lining the periodontal pocket / gingival sulcus (subgingival dental plaques) are among the most complex biofilms that exist in nature. These biofilms include a subset of selected species from more than 700 bacterial species or phylotypes⁴³⁻⁴⁵ that can lead to periodontal diseases (gingivitis or periodontitis). Mechanical removal of the periodontal biofilms is currently the most frequently used method of periodontal disease treatment. Antimicrobial agents are also used, but biofilm species exhibit several resistance mechanisms⁴⁶⁻⁴⁸ and maintaining therapeutic concentrations of antimicrobials in the oral cavity can be difficult⁴⁹. Photodynamic therapy has been suggested as an alternative to chemical antimicrobial agents to eliminate subgingival species and treat periodontitis⁵⁰. The application of methylene blue-mediated photodynamic therapy in clinical studies using either the Periowave Treatment kit or the Helbo Blue treatment kit is as follows: methylene blue is applied directly in the dental pockets for 60 s followed by exposure to red light via a fiberoptic probe for 60 s per pocket or per tooth (10 s per site, six sites in total). In the majority of these studies, photodynamic therapy as an adjunct to scaling and root planing did not show any beneficial effects over scaling and root planing alone. It is possible that short exposures to light may be responsible for the lack of clinical benefits. Several studies have shown that periodontal bacteria are susceptible to photodynamic therapy in planktonic cultures^{38,51-54} plaque scrapings^{55,56} using methylene blue^{53,55,57} and biofilms^{57,58} toluidine blue 0,^{51,52,55-57,59} phthalocyanine,^{56,57} hematoporphyrin HCl,⁵⁷ hematoporphyrin ester⁵⁷ and a conjugate between poly-L-lysine and the photosensitizer chlorin e6⁵⁴. Biofilms were also exposed to methylene blue (25 or 50 \lg / ml) and the same light conditions as their planktonic counterparts.

Photodynamic therapy produced approximately 63% killing of bacteria in the planktonic phase, whereas in biofilms derived from the same plaque samples the effect of light was reduced (31% killing). The reduced susceptibility of bacteria to photodynamic therapy in the biofilm may be related to the distinct and protected phenotypes expressed by them once they attach to the tooth, which are still carried by dental plaque bacteria in suspension. The reduced susceptibility of biofilms to photodynamic therapy may be related to the inactivation of methylene blue⁶⁸, the existence of biofilm bacteria in a slow growing or starved state⁶⁹ and to certain phenotypes expressed by biofilm species when they attach to the agar surface. The reduced susceptibility of biofilms to photodynamic therapy may also be attributed to the reduced penetration of methylene blue, an explanation that has been introduced previously⁷⁰. It has been suggested, in studies of model systems, that water channels can carry solutes into or out of the depths of a biofilm, but they do not guarantee access to the interior of the cell clusters⁷¹ whose diameter may range from 20 to 600 lm⁷². Biophysical means, such as ultrasonic irradiation⁷³ and electric fields⁷⁴,

known as the bioacoustic effect and the bioelectric effect, respectively, have been employed to enhance the efficacy of various agents in killing biofilm microorganisms. These methodologies, however, require an application time of up to 48 h in order to achieve significant bacterial killing^{75,76}, which would preclude their clinical use. Recently, it has been showed that the application of photomechanical waves also enhances the methylene blue concentration and the penetration depth into multispecies biofilms evolved from human saliva in vitro.⁷⁷ The hypothesis was that photomechanical waves enhance fluid forces at the biofilm-bulk water interface that deform the microcolonies of bacteria and the matrix, so that fluid movement occurs. The synergistic action of photomechanical waves and photodynamic therapy has the potential to contribute to the development of a new system for the topical, rapid and non-invasive treatment of periodontitis. In vivo studies with experimentally induced periodontits in rats have shown suppression of periodontal pathogens and a reduction of periodontitis following photodynamic therapy with toluidine blue O.^{60,80} The authors also found significant reductions of periodontal bone loss in diabetic⁸³ and immunosuppressed⁸⁴ rats using toluidine blue O. Several clinical studies have been carried out to investigate the effects of adjunctive photodynamic therapy in human periodontitis. In all of these studies, methylene blue was the photosensitizer. Two of these studies reported significant clinical improvement (reduced probing pocket depth and bleeding on probing, increased clinical attachment level) when photodynamic therapy was used along with scaling and root planing.⁸⁵⁻⁶

New **Frontiers** In Oral Antimicrobial Photodynamic Therapy: The role of photodynamic therapy as a local treatment of oral infection, either in combination with traditional methods of oral care, or alone, arises as a simple, nontoxic and inexpensive modality with little risk of microbial resistance. Lack of reliable clinical evidence. however, has not allowed the effectiveness of photodynamic therapy to be confirmed. Studies have been performed using different treatment conditions and parameters with insufficient clinical The and microbiological findings. reduced susceptibility of complex oral biofilms to antimicrobial photodynamic therapy may require the development of novel delivery and targeting approaches. Evolving therapeutic strategies for biofilm-related infections include the use of substances designed to target the biofilm matrix, non growing bacteria (persister cells) within biofilms and / or quorum sensing.47 The use of bacteriophages⁸⁷ and naturally occurring orsynthetic antimicrobial peptides⁸⁸ may offer the possibility of bacterial targeting without the emergence of resistance. Recently, the advantages of targeted therapy become more apparent, and the use of light alone, antibody-photosensitizer and bacteriophage-photosensitizer conjugates or non antibody based targeting moieties, such as nanoparticles, are gaining increasing attention.

Phototherapy: In some instances, application of a photosensitizer may not be required because photosensitizers occur naturally within some microbial species. This is particularly true of the oral black-pigmented species. According to Soukos NS et al it has been shown that broadband light ranging from 380 to520 nm was able to achieve a threefold reduction in the growth of P. gingivalis, P. intermedia, Prevotella nigrescens and Prevotella melaninogenica in dental plaque samples obtained from human subjects with chronic periodontitis.⁸⁹ In this study, the presence and amounts of endogenous porphyrins in black-pigmented bacteria were estimated and analysis of bacteria in dental plaque samples was performed by DNA-DNA hybridization for 40 taxa before and after phototherapy. Inactivation of black-pigmented bacteria by visible light has also been reported by investigators like Feuerstein O et al, Fux CA et al, Henry CA et al, etc.⁸⁹⁻⁹⁵ Black-pigmented bacteria, such as P. intermedia, P. nigrescens and P. melaninogenica, are associated with gingivitis as reported by Danielsen B et al, Goodson JM, Tanner⁹⁶⁻⁸ and may be responsible for the increased bleeding tendencv of longstandinggingivitis.⁹⁷ Prevotella species have also been recognized as potent producers of volatile sulfur compounds on the dorsum of the tongue⁹⁹ and were detected at high numbers in tongue samples obtained from subjects with oral malodour.¹⁰⁰⁻⁰¹ In another study by Sterer N et al, human salivary microflora was exposed to blue light of 400–500 nm and a reduction in the levels of

volatile sulfide compounds was found, together with a selective inhibitory effect on the gramnegative bacteria, suggesting that it may be possible to use light to treat oral malodour.²⁰⁰Additionally, Moore WE et al have reported that black-pigmented bacteria, such as P. gingivalis and P. intermedia, are associated with the development of periodontitis¹⁰²⁻³ and Meurman JH et al have reported it to be involved in the pathogenesis of cardiovasculardisease.¹⁰⁴ Studies by Chiu B et al, Haraszthy VI et al, Taylor-Robinson D have reported black-pigmented bacteria to be detected in atheroma plagues¹⁰⁵⁻⁷ and this may have an impact on the reduction of bleeding in gingivitis, the reduction of inflammation in periodontitis and the cure of oral malodor. In all of the cases, exposure to visible light may result in the gradual suppression of black-pigmented bacteria that will lead to a shift of the microbial composition towards a new one associated with health. This novel technique may offer the following advantages compared with other forms of periodontal therapy (scaling, mouth washes and surgery): (i) rapid and painless application of light; (ii) selectivity in its effect; (iii) full penetration of dental plaque by light; (iv) limited penetration of light into gum tissue; (v) absence of phototoxicity to human cells; (vi) no effects on taste; and (vii) possible clinical and microbiological benefit with minimal impact on natural microbiota.

Antibody-Targeted Antibacterial **Approaches** Photodynamic Antibodies Using Therapy: conjugated with photosensitizers have been used to target Staphylococcus aureus.¹⁰⁸⁻⁹ Selective killing of P. gingivalis was achieved in the presence of Streptococcus sanguinis (previously S. sanguis) or in human gingival fibroblasts using amurine monoclonal antibody against P. gingivalis lipopolysaccharide conjugated with toluidine blue O.¹¹⁰ In two studies by Embleton ML et al and Hope CK et al bacteriophages were used as vehicles to deliver the photosensitizer tin(IV) chlorinee6 to the surface of S. aureus strains.¹¹¹⁻² This led to approximately 99.7% killing of microorganisms¹¹² The combination of pulsed laser energy and absorbing gold nano particles selectively attached to the bacterium for killing of microorganisms is a new technology that was introduced recently as suggested in studies by Zharov VP et al,¹¹³ Gold nanoparticles are promising candidates for application as photothermal sensitizers and can easily be conjugated to antibodies. The surface of S. aureus was targeted using 10- to 40-nm gold particles conjugated with anti-protein nano antibodies.¹¹³ The energy that was absorbed by nano particles during irradiation was quickly transferred through non radiative relaxation in to heat accompanied by bubble-formation phenomena around clustered nano particles, leading to irreparable bacterial damage. Antibodytargeted approaches using photodynamic therapy have been most frequently focused on the treatment of malignant diseases. The therapeutic potential of these approaches for bacterial targeting is based on their ability to demonstrate minimal damage to host cells. Therefore, these approaches should be further explored in vitro and in animal studies.

Conclusion: The potential applications of photodynamic therapy to treat oral conditions seem limited only by our imagination. Applications appear not only the common oral diseases of dental caries and periodontal disease but also the conditions of oral cancer, periimplantitis, endodontic therapy, candidiasis and halitosis. Low toxicity and rapidity of effect are qualities of photodynamic therapy that are enviable. It is now the time to demonstrate clear evidence of clinical efficacy and applicability. At this time in history, it is difficult to know where light will lead us in the oral cavity but the promise is clear and the opportunities are visible.

References:

- 1. Raab O. The effect of fluorescent agents on infusoria. Z Biol 1900;39:524-6.
- 2. Ackroyd R, Kelty C, Brown N, Reed M. the history of photodetection and photodynamic therapy. Photochem photobiol 2001;74:656-69
- 3. von Tappeiner H. Zur kenntnis der lichtwirkenden (fluoreszierenden) Stoffe. Dtsch Med Wochen 1904: 1: 579–580.
- 4. Von Tappeiner H, Jodlbauer A. On the effect of photodynamic (fluorescent) substances on protozoa and enzymes (in German). Deutsch Arch Klin Medizin 1904;39:427-87.
- 5. Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and

periodontal disease. J Appl Bacteriol 1993: 75: 299–306.

- 6. Allison RR, Baganto VS, Cuenca R, Downie GH, Sibata CH. The future of photodynamic therapy in oncology. Future Oncol 2006;2:53–71.
- Sharwani A, Jerjes W, Salih V, MacRobert AJ, El-Maaytah M, Khalil HSM, *et al.*. Fluorescence spectroscopy combined with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence in detecting oral premalignancy. *J Photochem Photobiol B* 2006: 83; 27-33.
- K. Konopka and T. Goslinski. Photodynamic Therapy in Dentistry. J Dent Res 2007;2:694-707,
- 9. Jori G. Photodynamic therapy of microbial infections: State of the art and perspectives. J Environ Pathol Toxicol Oncol 2006;25:505-20.
- Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997: 39: 1–18
- Chabrier-Rosello´Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrinmediated phototoxicity. Antimicrob Agents Chemother 2005: 49: 4288–4295.
- 12. Featherstone JDB. The continuum of dental caries evidence for a dynamic disease process. J Dent Res 2004: 83C:C39–C42.
- Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 2004: 3: 412–418.
- 14. Bevilacqua IM, Nicolau RA, Khouri S, Brugnera A Jr,Teodoro GR, Zangaro RA, Pacheco MT. The impact of photodynamic therapy on the viability of Streptococcus mutans in a planktonic culture. Photomed Laser Surg 2007:25: 513–518.
- Burns T, Wilson M, Pearson GJ. Sensitisation of cariogenic bacteria to killing by light from a helium-neon laser. J Med Microbiol 1993: 38: 401–405.
- Burns T, Wilson M, Pearson GJ. Killing of cariogenic bacteria by light from a gallium aluminium arsenide diode laser. J Dent 1994: 22: 273–278.
- 17. Williams JA, Pearson GJ, Colles MJ, Wilson M. The effect of variable energy input from a novel light source on the photoactivated

bactericidal action of toluidine blue O on Streptococcus mutans. Caries Res 2003: 37: 190–193.

- Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS. Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 2008: 26: 281–287.
- 19. Zanin IC, Goncalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother 2005: 56: 324–330.
- Zanin IC, Lobo MM, Rodrigues LK, Pimenta LA, Hofling JF, Goncalves RB. Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur J Oral Sci 2006: 114: 64–69.
- Paulino TP, Ribeiro KF, Thedei G Jr, Tedesco AC, Ciancaglini P. Use of hand held photopolymerizer to photoinactivate Streptococcus mutans. Arch Oral Biol 2005: 50: 353–359.
- Burns T, Wilson M, Pearson GJ. Effect of dentine and collagen on the lethal photosensitization of Streptococcus mutans. Caries Res 1995: 29: 192–197.
- 23. Wilson M, Burns T, Pratten J. Killing of Streptococcus sanguis in biofilms using a lightactivated antimicrobial agent. J Antimicrob Chemother 1996: 37: 377–381.
- 24. Wilson M, Burns T, Pratten J, Pearson GJ. Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 1995: 78: 569–574.
- 25. Metcalf D, Robinson C, Devine D, Wood S. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother 2006: 58: 190–192.
- Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 2006: 57:680–684.
- 27. Ramage G, Tomsett K, Wickes BL, Lopez-Ribot JL, Redding SW. Denture stomatitis: a role for

Candida biofilms. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004: 98:53–59.

- Jarvensivu A, Hietanen J, Rautemaa R, Sorsa T, Richardson M. Candida yeasts in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Oral Dis 2004: 10: 106–112
- 29. Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev 2004: 17: 255–267.
- 30. Jabra-Rizk MA, Falkler WA, Meiller TF. Fungal biofilms and drug resistance. Emerg Infect Dis 2004: 10: 14–19.
- Bliss JM, Bigelow CE, Foster TH, Haidaris CG. Susceptibility of Candida species to photodynamic effects of photofrin. Antimicrob Agents Chemother 2004: 48: 2000–2006.
- Cormick MP, Alvarez MG, Rovera M, Durantini EN. Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives. Eur J Med Chem 2009: 44: 1592–1599.
- Giroldo LM, Felipe MP, de Oliveira MA, Munin E, Alves LP, Costa MS. Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 2009: 24:109–112.
- Munin E, Giroldo LM, Alves LP, Costa MS. Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). J Photochem Photobiol B 2007: 88: 16–20.
- So CW, Tsang PW, Lo PC, Seneviratne CJ, Samaranayake LP, Fong WP. Photodynamic inactivation of Candida albicans by BAM-SiPc. Mycoses 2010: 53: 215–220.
- 36. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO. Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and lowpower laser irradiation alone against Candida albicans. Lasers Med Sci 2010: 25: 385–389.
- Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO. Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 2006:83: 34–38.
- Wilson M, Mia N. Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 1993:22: 354–357.

- 39. Chabrier-Rosello' Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrinmediated phototoxicity. Antimicrob Agents Chemother 2005: 49: 4288–4295.
- 40. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B 2007: 86: 59–69.
- 41. Ceballos-Salobrena A, Gaitan-Cepeda LA, Ceballos-Garcia L, Lezama-Del Valle D. Oral lesions in HIV / AIDS patients undergoing highly active antiretroviral treatment including protease inhibitors: a new face of oral AIDS? AIDS Patient Care STDS 2000: 14: 627–635.
- 42. Maver-Biscanin M, Mravak-Stipetic M, Jerolimov V. Effect of low-level laser therapy on Candida albicans growth in patients with denture stomatitis. Photomed Laser Surg 2005: 23: 328–332.
- 43. Kroes I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 1999: 96: 14547–14552.
- 44. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol 2005: 43: 3944–3955.
- 45. Sakamoto M, Umeda M, Benno Y. Molecular analysis of human oral microbiota. J Periodontal Res 2005: 40: 277–285.
- 46. Anderson GG, O_Toole GA. Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 2008: 322: 85–105.
- 47. del Pozo JL, Patel R. The challenge of treating biofilmassociated bacterial infections. Clin Pharmacol Ther 2007:82: 204–209.
- 48. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005: 13:34–40.
- 49. Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem Photobiol Sci 2004: 3: 412–418.
- 50. Wilson M. Photolysis of oral bacteria and its potential use in the treatment of caries and

periodontal disease. J Appl Bacteriol 1993: 75: 299–306.

- 51. Bhatti M, MacRobert A, Henderson B, Wilson M. Exposure of Porphyromonas gingivalis to red light in the presence of the light-activated antimicrobial agent toluidine blue decreases membrane fluidity. Curr Microbiol 2002: 45: 118–122.
- 52. Bhatti M, MacRobert A, Meghji S, Henderson B, Wilson M. Effect of dosimetric and physiological factors on the lethal photosensitization of Porphyromonas gingivalis in vitro. Photochem Photobiol 1997: 65: 1026– 1031.
- Chan Y, Lai CH. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med Sci 2003: 18: 51–55.
- 54. Soukos NS, Ximenez-Fyvie LA, Hamblin MR, Socransky SS, Hasan T. Targeted antimicrobial photochemotherapy. Antimicrob Agents Chemother 1998: 42: 2595–2601.
- 55. Sarkar S, Wilson M. Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis. J Periodontal Res 1993: 28: 204–210.
- 56. Wilson M, Burns T, Pratten J, Pearson GJ. Bacteria in supragingival plaque samples can be killed by low-power laser light in the presence of a photosensitizer. J Appl Bacteriol 1995: 78: 569–574.
- Dobson J, Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch Oral Biol 1992: 37: 883– 887.
- 58. Wood S, Nattress B, Kirkham J, Shore R, Brookes S, Griffiths J, Robinson C. An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo. J Photochem Photobiol B 1999: 50: 1–7.
- 59. Matevski D, Weersink R, Tenenbaum HC, Wilson B, Ellen RP, Lepine G. Lethal photosensitization of periodontal pathogens by a red-filtered xenon lamp in vitro. J Periodontal Res 2003: 38: 428–435.
- 60. Qin Y, Luan X, Bi L, He G, Bai X, Zhou C, Zhang Z. Toluidine blue-mediated photoinactivation of periodontal pathogens from supragingival plaques. Lasers Med Sci 2008: 23: 49–54.

- 61. Soukos NS, Mulholland SE, Socransky SS, Doukas AG. Photodestruction of human dental plaque bacteria:enhancement of the photodynamic effect by photomechanical waves in an oral biofilm model. Lasers Surg Med 2003: 33: 161–168.
- 62. Soukos NS, Socransky SS, Mulholland SE, Lee S, Doukas AG. Photomechanical drug delivery into bacterial biofilms. Pharm Res 2000: 17: 405–409.
- 63. Mu[°] Iler P, Guggenheim B, Schmidlin PR. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur J Oral Sci 2007: 115: 77–80.
- Ogura M, Blissett R, Ruggiero K, Som S, Goodson J, Kent R, Doukas A, Soukos N. Photomechanical wave-assisted molecular delivery in oral biofilms. World J Microbiol Biotechnol 2007: 23: 1637–1646.
- 65. O_Neill JF, Hope CK, Wilson M. Oral bacteria in multispecies biofilms can be killed by red light in the presence of toluidine blue. Lasers Surg Med 2002: 31: 86–90.
- 66. Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios CI, Kent R, Goodson JM,Tanner ACR, Soukos NS. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res 2009: 44: 751–759.
- 67. Tegos GP, Hamblin MR. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 2006: 50: 196– 203.
- 68. Foley I, Gilbert P. Antibiotic resistance of biofilms. Biofouling 1996: 10: 331–346.
- Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 1988: 22: 777–780.
- Stewart PS, Grab L, Diemer JA. Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol 1998: 85: 495– 500.
- 71. Stewart PS. Diffusion in biofilms. J Bacteriol 2003: 185:1485–1491.
- 72. Rani SA, Pitts B, Stewart PS. Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse

microscopy. Antimicrob Agents Chemother 2005: 49: 728–732.

- Qian Z, Sagers RD, Pitt WG. The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng 1997: 25: 69–76.
- Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother 1994: 38: 2803– 2809.
- 75. Carmen JC, Roeder BL, Nelson JL, Ogilvie RL, Robison RA, Schaalje GB, Pitt WG. Treatment of biofilm infections on implants with lowfrequency ultrasound and antibiotics. Am J Infect Control 2005: 33: 78–82.
- 76. Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem Rodrigues M, Moreau JM, Ellison WJ. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob Agents Chemother 2004: 48:4662– 4664.
- 77. Konan YN, Gurny R, Allemann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 2002: 66: 89–106.
- Lee S, McAuliffe DJ, Flotte TJ, Kollias N, Doukas AG. Photomechanical transdermal delivery: the effect of laser confinement. Lasers Surg Med 2001: 28: 344–347.
- 79. Mulholland SE, Lee S, McAuliffe DJ, Doukas AG. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm Res 1999: 16: 514–518.
- Ko¨merik N, Nakanishi H, MacRobert AJ, Henderson B, Speight P, Wilson M. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob Agents Chemother 2003:47: 932–940.
- de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. Influence of photodynamic therapy on the development of ligature-induced periodontitis in rats. J Periodontol 2007: 78: 566–575.
- de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Oshiiwa M, Garcia VG. In vivo effect of photodynamic therapy on periodontal bone loss in dental furcations. J Periodontol 2008: 79: 1081–1088.

- de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Bonfante S, Garcia VG. Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J Periodontol 2008: 79: 2156–2165.
- 84. Fernandes LA, de Almeida JM, Theodoro LH, Bosco AF, Nagata MJ, Martins TM, Okamoto T, Garcia VG. Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J Clin Periodontol 2009: 36: 219–228.
- 85. Andersen R, Loebel N, Hammond D, Wilson M. Treatment of periodontal disease by photodisinfection compared to scaling and root planing. J Clin Dent 2007: 18: 34–38.
- 86. Braun A, Dehn C, Krause F, Jepsen S. Shortterm clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: a randomized clinical trial. J Clin Periodontol 2008: 35: 877–884.
- Cerveny KE, DePaola A, Duckworth DH, Gulig PA. Phage therapy of local and systemic disease caused by Vibrio vulnificus in irondextran-treated mice. Infect Immun 2002: 70: 6251–6262.
- 88. Sajjan US, Tran LT, Sole N, Rovaldi C, Akiyama A, Friden PM, Forstner JF, Rothstein DM. P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients. Antimicrob Agents Chemother 2001: 45: 3437–3444.
- Soukos NS, Som S, Abernethy AD, Ruggiero K, Dunham J, Lee C, Doukas AG, Goodson JM. Phototargeting oral blackpigmented bacteria. Antimicrob Agents Chemother 2005:49: 1391– 1396.
- Feuerstein O, Persman N, Weiss EI. Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem Photobiol 2004: 80: 412–415.
- 91. Fukui M, Yoshioka M, Satomura K, Nakanishi H, Nagayama M. Specific-wavelength visible light irradiation inhibits bacterial growth of Porphyromonas gingivalis. J Periodontal Res 2008: 43: 174–178.
- 92. Henry CA, Dyer B, Wagner M, Judy M, Matthews JL. Phototoxicity of argon laser irradiation on biofilms of Porphyromonas and

Prevotella species. J Photochem Photobiol B 1996: 34: 123–128.

- 93. Henry CA, Judy M, Dyer B, Wagner M, Matthews JL. Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser. Photochem Photobiol 1995: 61:410–413.
- 94. Ko¨nig K, Teschke M, Sigusch B, Glockmann E, Eick S, Pfister W. Red light kills bacteria via photodynamic action. Cell Mol Biol (Noisy-legrand) 2000: 46: 1297–1303.
- Sterer N, Feuerstein O. Effect of visible light on malodour production by mixed oral microflora. J Med Microbiol 2005: 54: 1225–1229.
- 96. Danielsen B, Wilton JM, Baelum V, Johnson NW, Fejerskov O. Serum immunoglobulin G antibodies to Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Streptococcus sanguis during experimental gingivitis in young adults. Oral Microbiol Immunol 1993:8: 154–160.
- Goodson JM, Palys MD, Socransky SS. Experimental gingivitis:health to disease without "red complex" bacterial proliferation. J Dent Res 2003: 82A: abstract# 583.
- Tanner A. Microbial etiology of periodontal diseases. Where are we? Where are we going? Curr Opin Dent 1992:2: 12–24.
- Nakano Y, Yoshimura M, Koga T. Methyl mercaptan production by periodontal bacteria. Int Dent J 2002: 52(Suppl 3): 217–220.
- Tyrrell KL, Citron DM, Warren YA, Nachnani S, Goldstein EJ. Anaerobic bacteria cultured from the tongue dorsum of subjects with oral malodor. Anaerobe 2003: 9: 243–246.
- 101. Washio J, Sato T, Koseki T, Takahashi N. Hydrogen sulfideproducing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 2005: 54:889–895.
- 102. Moore WE, Moore LV. The bacteria of periodontal diseases. Periodontol 2000 1994: 5: 66–77.
- 103. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998: 25: 134–144.
- 104. Meurman JH, Sanz M, Janket SJ. Oral health, atherosclerosis, and cardiovascular disease. Crit Rev Oral Biol Med 2004: 15: 403– 413.

NJIRM 2014; Vol. 5(4).July-August

- 105. Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J 1999: 138: S534–S536.
- 106. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J Periodontol 2000: 71: 1554–1560.
- Taylor-Robinson D, Aduse-Opoku J, Sayed P, Slaney JM, Thomas BJ, Curtis MA. Oro-dental bacteria in various atherosclerotic arteries. Eur J Clin Microbiol Infect Dis 2002: 21: 755–757.
- Embleton ML, Nair SP, Cookson BD, Wilson M. Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin (IV) chlorin e6 conjugate. J Antimicrob Chemother 2002: 50: 857–864.
- Embleton ML, Nair SP, Cookson BD, Wilson M. Antibodydirected photodynamic therapy of methicillin resistant Staphylococcus aureus. Microb Drug Resist 2004: 10: 92–97.
- 110. Bhatti M, MacRobert A, Henderson B, Shepherd P, Cridland J, Wilson M. Antibodytargeted lethal photosensitization of Porphyromonas gingivalis. Antimicrob Agents Chemother 2000: 44: 2615–2618.
- 111. Embleton ML, Nair SP, Heywood W, Menon DC, Cookson BD, Wilson M. Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 2005: 49: 3690–3696.
- 112. Hope CK, Packer S, Wilson M, Nair SP. The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization. J Antimicrob Chemother 2009: 64: 59–61.
- 113. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 2006: 90: 619–627.

Conflict of interest: None Funding: None